The Steady-State Atmospheric Circulation Response to Climate Change–like Thermal Forcings in a Simple General Circulation Model
نویسندگان
چکیده
The steady-state extratropical atmospheric response to thermal forcing is investigated in a simple atmospheric general circulation model. The thermal forcings qualitatively mimic three key aspects of anthropogenic climate change: warming in the tropical troposphere, cooling in the polar stratosphere, and warming at the polar surface. The principal novel findings are the following: 1) Warming in the tropical troposphere drives two robust responses in the model extratropical circulation: poleward shifts in the extratropical tropospheric storm tracks and a weakened stratospheric Brewer–Dobson circulation. The former result suggests heating in the tropical troposphere plays a fundamental role in the poleward contraction of the storm tracks found in Intergovernmental Panel on Climate Change (IPCC)-class climate change simulations; the latter result is in the opposite sense of the trends in the Brewer–Dobson circulation found in most previous climate change experiments. 2) Cooling in the polar stratosphere also drives a poleward shift in the extratropical storm tracks. The tropospheric response is largely consistent with that found in previous studies, but it is shown to be very sensitive to the level and depth of the forcing. In the stratosphere, the Brewer–Dobson circulation weakens at midlatitudes, but it strengthens at high latitudes because of anomalously poleward heat fluxes on the flank of the polar vortex. 3)Warming at the polar surface drives an equatorward shift of the storm tracks. The storm-track response to polar warming is in the opposite sense of the response to tropical tropospheric heating; hence large warming over theArcticmay act to attenuate the response of theNorthernHemisphere storm track to tropical heating. 4) The signs of the tropospheric and stratospheric responses to all thermal forcings considered here are robust to seasonal changes in the basic state, but the amplitude and details of the responses exhibit noticeable differences between equinoctial and wintertime conditions. Additionally, the responses exhibit marked nonlinearity in the sense that the response to multiple thermal forcings applied simultaneously is quantitatively different from the sum of the responses to the same forcings applied independently. Thus the response of the model to a given thermal forcing is demonstrably dependent on the other thermal forcings applied to themodel.
منابع مشابه
Regional climate changes and their effects on monthly energy consumption in buildings in Iran
This present research work was carried out to evaluate the energy consumption in a typical Iranian building based on the forecast of climatic variables. Thus, the LARS-WG model was validated for some northwest stations of Iran, including Tabriz, Ardebil, Oromieh, Kermanshah, Hamedan, Sannandaj, Qazvin, and Zanjan. The average monthly outdoor temperature was forecasted from 2011 to 2100. The rel...
متن کاملStudy of the models of large-scale atmospheric circulation system model on intesify rainfall in Ardebil plain
Atmospheric circulation is important to determine the surface climate and environment, and affect regional climate and surface features. In this study, to quantify its effect, the classification system, developed by Lamb is applied to obtain circulation information for Ardabil, North West Province in Iran, on a daily basis, and is a method to classify synoptic weather for study area. For that p...
متن کاملAbrupt Circulation Responses to Tropical Upper-Tropospheric Warming in a Relatively Simple Stratosphere-Resolving AGCM
The circulation response of the atmosphere to climate change–like thermal forcing is explored with a relatively simple, stratosphere-resolving general circulation model. The model is forced with highly idealized physics, but integrates the primitive equations at resolution comparable to comprehensive climate models. An imposed forcing mimics the warming induced by greenhouse gasses in the low-l...
متن کاملModeling the current and future suitable habitat distribution of Fritillaria imperialis under climate change scenarios and using three general circulation model in Iran
Climate change may pose challenges to the conservation of plant species such as the Fritillaria imperialis that have narrow geographical distribution. In this study, the modeling suitable habitats of F.imperialis in Iran was done in the current condition and under climate change (2050). For this purpose, 78 species presence data along with 12 environmental variables including bioclimatic, physi...
متن کاملTemperature simulation of southwestern Iran during (2015-2050) using data from the general air circulation model
In recent years, global warming and climate change have been associated with dire consequences for human societies. Changes in climate patterns can lead to severe floods, extreme heat and cold, more frequent droughts, and global warming. This increase in global warming has upset the Earthchr('39')s climate balance and caused widespread climate change in most parts of the world, known as climate...
متن کامل